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Small molecule solubility is a critically important property which affects the
efficiency, environmental impact, and phase behavior of synthetic processes.
Experimental determination of solubility is a time- and resource-intensive
process and existing methods for in silico estimation of solubility are limited
by their generality, speed, and accuracy. This work presents two models
derived from the FASTPROP and CHEMPROP architectures and trained on
BigSolDB which are capable of predicting solubility at arbitrary temperatures
for a wide range of small molecules in organic solvent. Both extrapolate to
unseen solutes 2-3 times more accurately than the current state-of-the-art
model and we demonstrate that they are approaching the aleatoric limit (0.5-1
log S) of available test data, suggesting that further improvements in predic-
tion accuracy require more accurate datasets. The FASTPROP-derived model
(called FASTSOLV) and the CHEMPROP-based model are open source, freely
accessible via a Python package and web interface, highly reproducible, and up
to 2 orders of magnitude faster than current alternatives.

The solubility of organic solids in various solvents is an essential
molecular property that impacts the efficiency’, environmental
impact™’, and phase behavior* of synthetic processes. Solubility is
crucial in wide-ranging chemical processes spanning length and time
scales including crystallization and filtration*, membrane-based che-
mical separations®®, pharmaceutical design and discovery’, drug
delivery and formulation®, the environmental fate of per- and poly-
fluoroalkyl substances (PFAS)’ and geological-scale dissolved organic
carbon flux'®. By convention, solubility S in molL™ is expressed as
log;oS since values can range over several orders of magnitude.
Experimental methods for determining solubility are notoriously time-
and resource-intensive™ and error prone, thus many published values
are suspected of being highly inaccurate. The challenges of measuring
solubility are especially painful in pharmaceutical development where
organic solubility complicates synthesis and purification'? and aqueous
solubility limits in vivo efficacy®. Given that solubility as a function of
temperature is often desired, experimental determination becomes
even more onerous. For these reasons a priori estimation of log S has
long been of immense interest to the chemical sciences.

Critically, the experimental error is typically systematic rather than
random because organic molecules are often isolated as an amorphous
solid, hydrate, polymorph, or impure cocrystal rather than the desired
most-stable pure crystal, confounding accurate measurement™. The
reported standard deviation in inter-laboratory measurements in log S
typically ranges between 0.5 and 0.7 log units for aqueous solubility.
For example, Katritzky et al”® notably found the average inter-
laboratory standard deviation of 411 compounds to be 0.58. Other
reported average standard deviations in inter-laboratory measurements
include 0.6-0.7", 0.62", and 0.60'. Furthermore, other work found that
inter-laboratory solubility measurements for the same solution could
range over 0.86 log units and in some cases could vary as widely as 1.56
log unit”. Andersson et al.”° recruited 12 laboratories to measure solu-
bility, standardizing materials and collection methods between labora-
tories, and found that differences in data analysis alone could result in
variations as high as a standard deviation of 0.74 log unit between labs.
In sum, a variability between a factor of 3 (0.5 log units) and 10 (1 log
unit) in the measured solubility of the same solute in aqueous solutions
at the same temperature between laboratories is not unusual.
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Prediction methods have evolved from empirical group additivity
correlations?, to ab initio conductor-like screening model (COSMO)
and its extension to realistic solvation (COSMO-RS)*, to bespoke-
solvent machine learning (ML) models with random forest
regressors*. Direct ab initio calculation of organic crystals using
quantum mechanics is now possible but too computationally expen-
sive for routine or high-throughput calculations®?°. Given the specific
importance of aqueous solubility in drug discovery, most work has
focused on predicting aqueous solubility”, and relatively fewer works
have explored organic solvents, which are particularly crucial in syn-
thetic processes. The aforementioned experimental variability limit of
0.5-1 log S represents a bound on the performance of any data-driven
prediction method on a given dataset, since it is impractical to
remeasure a large number of solute-solvent solubility numbers with
significantly better accuracy and precision. Currently, this variability
limit has primarily been explored in the context of aqueous solubility
in the literature.'*”?® However, there is little reason to believe that the
experimental uncertainty should be any lower in organic solvents, and
may actually be higher due to increased variability in the experimental
methodologies used across laboratories®. This variability defines the
aleatoric limit - the ‘irreducible error’ below which model performance
improvements cannot be discerned.

State-of-the-art methods focus on applying deep learning to
organic solubility prediction, including graph-based neural networks
and descriptor-based models*?°*', Existing models, however, suffer
from a lack of generalizability for a variety of reasons. Boobier et al.**
trained solvent-specific models on only commonly available solvents
at room temperature due to a lack of sufficient data to do otherwise,
thus rendering their models non-generalizable by construction.
Other works like those of Lee et al.*° fail to evaluate model perfor-
mance when extrapolating to new, unseen solutes, a task which
mirrors the real task where solubility prediction would be applied in
a synthetic pipeline. The state-of-the-art model in literature by Ver-
meire et al.*® overcame some of these limitations by training a com-
position of deep learning models on the Gibbs free energy, enthalpy
of solvation, and the Abraham solvation parameters, which are then
combined via a thermodynamic cycle to predict the solubility in
arbitrary solvents for a wide range of temperatures. A significant
advantage of the Vermeire et al.*! model is that when interpolating
from known experimental data for a given solute to a new solvent the
model predictions are very accurate. Unfortunately without experi-
mental data to supplement the models, as would be the case when
screening new solutes in a discovery pipeline, performance drops
substantially.

Here, we combine advances in cheminformatics software and a
recently compiled database of organic solubility, BigSolDB,** develop a
state-of-the-art general organic solubility prediction model, and
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Fig. 1| Machine learning representation of solutions. a In our modeling

approach, solute (e.g. paracetamol) and solvent (e.g. ethyl acetate) structures are
mapped to representation vectors. These representation vectors are concatenated
to the solution temperature to arrive at a solution representation, which is passed
into a fully-connected neural network and regressed to the log of solubility (S, mol

representation

validate it under rigorous extrapolation conditions. By adapting the
FASTPROP* and CHEMPROP*** architecures to ingest two molecular
structures and a temperature (Fig. 1a) we train models on BigSolDB to
regress log S directly (Fig. 1b). Our optimized models yield a factor of
three improvement over the existing state-of-the-art organic solubility
prediction models, with rapid inference times suitable for use in high-
throughput workflows. We further demonstrate that our optimized
FASTPROP and CHEMPROP models, which use fundamentally different
molecular representations, both reach the irreducible error, or alea-
toric limit, of accuracy with only a small fraction of the total available
data. Further progress in organic solubility prediction will require
higher quality datasets to determine the true accuracy of the best
models. Our fastest model, termed FASTSOLYV, is open source and can
be downloaded as a python package (pypi.org/project/fastsolv/),
accessed online via fastsolv.mit.edu, and is integrated in ASKCOS
(askcos.mit.edu).

Results

Datasets and model training approach

In a real discovery context, solubility prediction is usually applied
toward a solute extrapolation task, wherein it is desirable to know the
solubility of a novel candidate compound in a variety of standard
solvents for a given temperature. Thus, we rigorously trained and
evaluated our model performance with this task in mind. However,
attention to the ability of a model to extrapolate to new solutes is not
typically heeded in the literature, making benchmarking our model
performance challenging.

We selected Vermeire et al.” as the current literature state-of-the-
art model against which to benchmark our results, given that it is
widely regarded as a highly accurate solvent and temperature-general
model’*?’. This approach consists of up to four machine learning sub-
models trained on thermochemical datasets which are combined to
yield solubility using a thermodynamic cycle. The overall model is
tested on the experimental solubility data compiled in the SolProp
dataset. Their objective was to to achieve excellent performance when
extrapolating into new solvents, so the compiled SolProp dataset
contains many solute structures already present in the training data
(Fig. 2a). Since its publication, improved models for some constituent
properties have become available, such as the solvation energy pre-
dictor developed by Kim et al.”’, but we leave the original SolProp
model intact for the sake of fair comparisons with its originally pub-
lished performance.

We trained our models on the BigSolDB dataset*, which contains
variable organic solvent and variable temperature solubility data at the
precipitation limit. As a point of comparison with the model developed
by Vermeire et al.”!, we tested our models on the SolProp dataset,
though with overlapping solute structures dropped from BigSolDB

b

Mapping

or chemprop

L. b Structures are mapped to feature vectors using a fixed representation of
Mordred descriptors as implemented in FASTPROP, or a learned representation
derived from message passing on a graph representation from CHEMPROP. We
compare the performance of models trained on these fundamentally different
solution representations.
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Fig. 2 | Datasets and model training approach. a The literature best Vermeire
et al.” trained on a thermodynamic cycle with > 20k solutes. The solutes seen
during training have overlaps with the SolProp and Leeds testing datasets. b In this
study, we rigorously test solute extrapolation performance of our models by
dropping overlap between the training dataset of BigSolDB*, and the SolProp* and
Leeds™ testing sets. ¢ Distribution of the label, the log of solubility (S, mol L™),
across the training and external testing sets. d Demonstration of a single solubility
experiment, which contains the measured solubility of a solute (dibenzothiophene)
in a solvent (diethylene glycol) across a range of temperatures (K), as measured by

True log S

Tao et al.*®, e Rigorous data splitting strategy splits training and validation data by
experiment, ensuring data is not leaked during model selection. f Parity plot
demonstrating predictions of optimized FASTPROP-based model on BigSolDB,
including training and validation data (N = 41,724). The model achieves a root mean
square error (RMSE) = 0.22 and % log S +1=99.3%. Black dotted line indicates parity
line. Gray dotted lines indicate the bounds of log S +1. Color indicates density,
determined using Gaussian kernel density estimation (KDE) visualized on a loga-
rithmic scale. See Sections 3.1 and 3.2 for training details. Source data are provided
as a Source Data file.

(Fig. 2b). This reflects our intended application—extrapolation into
new solutes with no additional information. The Vermeire et al.*”’ model
has many overlapping solute structures in its training data (see Fig. 2a),
leading to overly optimistic reported performance. To demonstrate
this and provide a second point of comparison in which both the
model developed by Vermeire et al.”' and our models extrapolate to
new solutes, we also tested on the Leeds organic solubility dataset
prepared by Boobier et al.?* This dataset is more diverse in solute
structures than the SolProp dataset but contains solubility data only
near room temperature. This makes it a rigorous test of a models’
capacity to extrapolate to new chemical space, likely also with a higher
aleatoric limit given the absence of de-facto averaging over multiple
measurements as in the SolProp dataset. The Leeds dataset has less
overlap in solute structures with the Vermeire et al.” training data than
SolProp (Fig. 2a), making it a more stringent extrapolation test. Thus,
testing the model developed by Vermeire et al.* and our models on the
Leeds dataset evaluates their ability to handle diverse solute chemistry
without considering the effects of temperature on solubility. The dis-
tribution of the label log S across all three datasets is similar, centered
around -1 with a long tail in the limit of low solubility (Fig. 2c).

We trained our models using 95% of the remaining data in Big-
SolDB, reserving 5% for validation and model selection. To avoid data
leaks we split our data to ensure no solutes appear in both training and
validation sets, meaning that every group of measurements for a

solute, one of which is visualized in Fig. 2d, will be grouped together.
Since we split our dataset by experiment and solute (Fig. 2e), we ensure
that we rigorously test extrapolation to new solutes. Additional details
about model training and hyperparameter optimization can be found
in Supporting Information Section S1. The performance of the
FASTPROP-based model on training and validation is shown in the
parity plot in Fig. 2f. Performance is quantified via the Root Mean
Squared Error (RMSE), defined in Equation (1) as:

RMSE = @

where y; is the true value, y; is the predicted value, and n is the number
of observations. Additionally, the Percentage of Predictions within 1
log S unit, a metric based on the upper reported limit of experimental
reproducibility, is referred to as %logS=+1*. This is calculated in
Equation (2) as:

1 n
%logS+1=100 x n E 1[\y,._yi|51.0] 2
i=1

where y; is the true value, y; is the predicted value, n is the number of
observations, 1 is the indicator function which equals 1 if the
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Fig. 3 | Performance of literature best Vermiere model and our optimized

solution FASTPROP and solution CHEMPROP models on test sets. Parity plots of
log of solubility (S, mol L™) on the x-axis against predicted log S. Black dotted line
indicates parity line. Gray dotted lines indicate the bounds of log S +1 around the
parity line. a Parity plot of the Vermeire et al.>» model on the Leeds* test data, which
has a root mean squared error (RMSE) =2.16 and % log S + 1=41.2%. b Parity plots of

the solution FASTPROP model on the Leeds? test data (RMSE = 0.95,

%log S +1=73.8%) and (c) the solution CHEMPROP on the Leeds* test data (RMSE =
0.99, %log S +1=70.9%). Parity plots highlighting model predictions of (d) Ver-
meire et al.” (RMSE=1.43, % log S +1=66.9%), (e) solution FASTPROP (RMSE = 0.83,
%log S+1=78.1%), and (f) solution CHEMPROP (RMSE = 0.83, % log S +1=76.1%) on
the SolProp™ dataset. Source data are provided as a Source Data file.

condition is true and O otherwise. The optimized solu-
tion FASTPROP model achieves excellent interpolation accuracy, with
RMSE = 0.22 and % log S +1=99.3%. Similarly, the optimized solution
CHEMPROP model achieved an RMSE = 0.28 and % log S+1=99.2%.

Model performance on solute extrapolation

After training solution FASTPROP and CHEMPROP models, their per-
formance on extrapolation was evaluated on the Leeds and SolProp test
sets and benchmarked against the Vermiere model as made available via
a Python package in the original publication. We observe that the Ver-
miere model performs comparatively poorly on the Leeds dataset, with
RMSE = 2.16 and %logS+1=41.2% (Fig. 3a). On inspection there is
observable systematic bias, with the model often over-predicting the
solubility. In contrast, both the solution FASTPROP and CHEMPROP
models perform similarly well, with RMSE = 0.95 and % log S +1=73.8%
for FASTPROP and RMSE = 0.99 and % log S +1=70.9% for CHEMPROP
(Fig. 3b, c). The systematic bias is greatly reduced in both models.

On the SolProp dataset, the Vermiere model performs slightly
better (RMSE =1.43 and % log S + 1= 66.9%), but still exhibits systematic
bias, with several specific experiments appearing with over-predicted
temperatures gradients compared to parity (Fig. 3d). This performance
is similar to what Vermeire et al.” reported when no experimental data
was available and only molecular structures are used as inputs to the
model. In contrast, the solution FASTPROP and CHEMPROP models
perform significantly better with RMSE = 0.83 and % log S +1=78.1% for
FASTPROP and RMSE = 0.83 and %logS+1=76.1% for CHEMPROP
(Fig. 3e, f).

When running inference on both the Leeds and SolProp test sets,
the solution FASTPROP model demonstrated inference times about
fifty-fold faster than the Vermeire et al.*» model due to its compara-
tively lightweight architecture. The use of molecular descriptors as an
embedding also enabled analysis of results with SHAP?’ (Supporting

Information Figure S1) to aid in interpretability of model results. We
trained four FASTPROP models with different initializations and
ensemble them, terming the resulting ensemble model FASTSOLV;
further results in this study referencing FASTSOLV refer to this
ensemble model specifically.

To go beyond these aggregate performance metrics and visually
inspect prediction and gradient accuracy, we also evaluated our
model performance on specific case studies from the SolProp test set
(Fig. 4). We selected two structurally distinct solutes from the held-
out SolProp test set-risperidone, a water-insoluble antipsychotic,
and L-prolinamide, an amino acid amide-and compared model pre-
dictions from the FASTSOLV model and the Vermeire et al.” model
against temperature-dependent experimental solubility data in dif-
ferent solvents. Risperidone was evaluated in polar acetone and
isopropyl alcohol, while L-prolinamide was tested in highly nonpolar
hexane and heptane.

We observe that FASTSOLYV significantly improves absolute and
gradient accuracy over the Vermeire et al.*» model for risperidone and
L-prolinamide solutions. Specifically, FASTSOLV achieves an RMSE of
0.16 for risperidone and 0.25 for L-prolinamide, compared to 1.64 and
2.33 for the Vermeire et al.*» model. For risperidone, FASTSOLV cor-
rectly predicts the relative solubility order in acetone and isopropanol
and predicts realistic temperature-dependence. The Vermeire et al.*!
model, in contrast, overpredicts solubility, has greater model uncer-
tainty, and overestimates the gradient with respect to temperature
(Fig. 4a). For L-prolinamide, FASTSOLV successfully discriminates
solubility between the highly similar solvents hexane and heptane,
correctly predicting higher solubility in heptane, while the Vermeire
et al.> model predicts nearly identical values (Fig. 4b). The ability to
rank solubility accurately and distinguish between structurally similar
solvents is critical for high-throughput virtual screening and suggests
that FASTOSLYV accurately represents solvent structure.
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Fig. 4 | Model validation on structurally different solutions. Solubility predic-
tions and experimental data as a function of temperature for solutions of (a) ris-
peridone in acetone (blue) and isopropanol (orange) and (b) L-prolinamide in
hexane (blue) and heptane (orange). Experimental data are plotted as circles,
predictions from the Vermeire et al.** model are plotted as dotted lines, and
ensemble average FASTSOLV predictions are plotted as solid lines. The shaded
error bands indicate uncertainty in model predictions for both models. For

Temperature (K)

FASTSOLYV, uncertainty is the ensemble standard deviation. For the Vermeire et al.
model, uncertainty is propagated from uncertainty in predicted constitutive ther-
modynamic quantities. Experimental risperidone solubility data is compiled in
SolPropVermeire et al.”’ from Mealey et al.”’. Experimental L-prolinamide solubility
data is compiled in SolProp from Cui et al.®® Source data are provided as a Source
Data file.

We also sought to identify failure modes of FASTSOLV by
probing solutes with inaccurate predictions. We observed poor
prediction accuracy on anthraquinone solutions in acrylonitrile
(RMSE = 1.80), methyl ethyl ketone (1.34), and isopropyl alcohol
(1.20), using reference data from Cepeda and Diaz**(Supporting
Information Figure S2). Model performance on the parent molecule
of anthraquinone, anthracene, in the same solvents exhibited much
higher accuracy (RMSE = 0.42, 0.37, and 0.12 in acetonitrile, methyl
ethyl ketone, and isopropyl alcohol, respectively). To further probe
this poor performance, we also evaluated solubility on 85 solutions
of the parent molecule anthracene and multiple -quinone derivatives
in a variety of solvents which are compiled in the SolProp test set. We
found an overall RMSE = 0.52, with RMSE = 0.76 for 4 anthracene
solutions, 0.44 for 32 2-ethylanthraquinone solutions, and 0.55 for
49 1-chloroanthraquinone solutions (Supporting Information Sec-
tion S3). However, even though the predictions on anthraquinone are
relatively inaccurate, the model is still able to correctly rank order
solubility between acetonitrile, methyl ethyl ketone, and isopropyl
alcohol (Supporting Information Figure S2), suggesting the model
has an accurate molecular representation of these challenging
polycyclic aromatics.

Model performance is capped by the aleatoric limit

As previously mentioned, there is substantial discussion in the literature
about the inter-laboratory variability of solubility experiments, which
can range between 0.5-1 log units, depending on the source and the
variability metric used. We thus sought to establish if our model per-
formance approaches this limit for the testing data. We first estimated
the inter-laboratory experimental variability within the present datasets
by identifying solutions with the same solute, solvent, and temperature
but different literature sources; this yielded 34 solutions containing 8
unique solutes and 6 unique solvents. Between these solutions the
average inter-laboratory standard deviation is 0.34 log while the RMSE is
0.75 log (Supporting Information Section S4). We use this value of inter-
laboratory RMSE (0.75) for direct comparison with model performance,
which also is evaluated in RMSE.

With this reference aleatoric limit established, we evaluated the
model performance trajectory as a function of training dataset size. To
do so, we randomly downsample the training dataset to some smaller
size, train a four-model ensemble and report the performance on the
test sets. Repeating this at different sizes of downsampled training sets
with multiple replicates at each size generates a performance

trajectory as a function of training set size (Fig. 5a). We observe that the
performance trajectories for both the FASTPROP and CHEMPROP
models are similar, despite representing fundamentally different
modeling approaches. We also observe that the model performance
on the SolProp test set plateaus after only 500 experiments (-5000
data points) are included in training for both the CHEMPROP and
FASTPROP models. Similarly, the performance on the Leeds test set
plateaus for the CHEMPROP model after only 2000 experiments
(-20,000 data points), although performance of the simpler FAS-
TPROP model takes slightly longer to plateau.

Next, we compared model predictions on these solutions with
multiple sources. Specifically, measurements of N-acetylglycine solu-
bility in acetonitrile and methanol were compiled in BigSolDB from
Zhao et al.* and SolProp from Guo et al.*° In acetonitrile, the experi-
mental data differ drastically, and the model predicts solubility values
in good agreement with the measurements from Zhao et al.** (Sup-
porting Information Figure S3a). In methanol, the data from both
sources are very similar, and the model predictions are in good
agreement (Supporting Information Figure S3b).

It is possible that epistemic uncertainty from model inexpres-
siveness or error could cause this plateau in test performance. To
investigate this point further we also benchmarked our models
against  state-of-the-art SMILES-based foundation models,
MolFormer* and ChemBERTa-2** by fine-tuning on BigSolDB (Sup-
porting Information Section S5). These models are dramatically dif-
ferent in fundamental architecture and number of parameters
compared to FASTPROP and CHEMPROP. We observe that our
models outperform both of these transformer models on the SolProp
and Leeds test sets (Supporting Information Figure S4). This
demonstrates that model testing performance is not limited by
model inexpressiveness or low model capacity.

Interestingly, the FASTPROP and CHEMPROP predictions on the
SolProp dataset are highly correlated, with a Pearson’s r = 0.81 (Fig. 5b).
This correlation is actually stronger than the correlation of either
model’s predictions of the SolProp testing set itself (0.66 for FAS-
TPROP and 0.65 for CHEMPROP). Additionally, comparing the
Cumulative Distribution Function (CDF) of predicted gradients of log S
with respect to temperature demonstrates the strong correlation
between the FASTPROP and CHEMPROP model predictions (Fig. 5¢).
We observe that the Vermeire et al.” model has severe systematic error
in dl;”rgs, achieving an Earth Mover’s Distance (EMD) of 0.06. In contrast,
our two models exhibit similar and highly accurate gradient
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Black dotted line shows parity. ¢ Cumulative Distribution Function (CDF) of the
gradients of log S with respect to temperature T (%) in the SolProp test set.
Vermeire et al.>» model predicted gradient CDF (green) achieves an earth movers
distance (EMD) of 0.06 compared to the SolProp ground truth gradient CDF
(black). FASTPROP predicted gradient CDF (orange, EMD = 0.03) and CHEMPROP
predicted gradient CDF (blue, EMD = 0.02) compared to the SolProp ground truth
gradient CDF (black). d, e Cumulative residual of FASTPROP (orange) and CHEM-
PROP (blue) model predictions of log S in the SolProp test set against (d) solute
molecular weight (g/mol) and (e) solvent Wildman-Crippen log P. Cumulative
residual is multiplied by 107 for concise axis labels. Source data are provided as a
Source Data file.

distributions, with EMD of 0.03 and 0.02. See Supporting Information
Section Sl for further details on model training and gradient-based
regularization. To further examine whether the models are predicting
similar results, we plot the cumulative residuals of each model against
important features in the SolProp test set. The cumulative residuals
against solute molecular weight (Fig. 5d) and solvent Wildman-Crippen
estimate of log P** (Fig. 5e) both demonstrate that the FASTPROP and
CHEMPROP models are making similar predictions and errors across
the SolProp test set.

Discussion

Here, we leveraged state-of-the-art cheminformatics software and
large compiled solubility datasets to develop accurate and general-
izable solubility models. Under strict extrapolation, we observe a 2-3
fold decrease in RMSE over the state-of-the-art model from Vermeire
et al.”. In addition, the relative simplicity of the architecture decreases
inference times up to fifty-fold. To the best of our knowledge, our
models are the best performing solvent- and temperature-general
models in the literature on solute extrapolation.

As shown in the solute Venn diagrams in Fig. 2, many entries in the
SolProp testing set are present in the training set for the Vermeire et al.”
model. This focus on interpolation during training leads to decreased
performance in the extrapolation study shown in Fig. 3, where the
performance decreased from an RMSE of 1.43 to 2.16 when moving from
the SolProp to Leeds test set. Furthermore, we observe some non-
physical gradients with respect to temperature in the SolProp dataset,
indicating that the model has not learned a comprehensive functional
approximation of the temperature dependence of log .

In contrast, our optimized solution FASTPROP and solution
CHEMPROP models exhibit much more consistent performance
between the Leeds and SolProp test sets, highlighting the strong per-
formance of our models under rigorous solute extrapolation (Fig. 3).
The slightly decreased accuracy of our models on the Leeds test set is
attributable to the increased solute diversity (Supporting Information

Figure S5) and lack of de-factor averaging from multiple temperature
measurements, artifacts of the difference in its construction.

Both of our models also exhibit accurate predictions of the gra-
dient on the solubility with respect to temperature (Figs. 4 and 5c,
Supporting Information Figures S2 and S3), indicating that the models
learned physically realistic temperature dependence, which is critically
important in process chemistry applications****. This can be attributed
to both the training procedure, which leverages gradient-based reg-
ularization (Supporting Information Section S1), and directly training
on the BigSolDB dataset, which contains abundant temperature gra-
dient data. Notably, unlike the Vermeire et al.>® model, our models
cannot take into account existing experimental reference data such as
the free energy of solvation or Abraham solvation parameters, and
in situations where such data is available, the Vermeire model could
become more accurate.

Our evaluation of model performance on specific solutions also
revealed that FASTSOLV accurately models temperature-dependence
and correctly discriminates solubility between similar solvents, such as
hexane and heptane (Fig. 4). Additionally, in cases where the model was
accurate (Supporting Information Figure S2a-c), or relatively inaccurate
(Supporting Information Figure S2d-f) in absolute performance, the
model still correctly rank-ordered solubility in different solvents. Taken
together, these results suggest that our model could readily be applied
in high-throughput solvent screening workflows, which is crucial in
synthetic*® and crystallization*” process development.

The training data size study and the error analysis presented in
Fig. 5 show that our optimized models, which rely on distinct mole-
cular mappings, both converge to the same performance limits with
similar distributions of predictions and errors. The highly correlated
predictions and cumulative residuals show both models achieve not
only the same average performance, but predict similarly across the
tests sets. Since CHEMPROP learns a molecular representation, this
model should be able to continuously improve performance as the size
of the training set increases, as demonstrated by both Heid et al.*® for
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several molecular properties and by Vermeire and Green* for solva-
tion free energy. However, the test performance of our optimized
CHEMPROP-based model stops improving after a relatively small
amount of training data, at which point variability in the testing data
prevents us from discerning improved model performance. As
detailed in Section 1.3, we evaluated a measure of the experimental
variability present between the training set and test sets, arriving at a
standard deviation of 0.34, and an RMSE of 0.75 (Supporting Infor-
mation Section S3). This standard deviation is well below the average
standard deviation range reported in literature (0.5-0.7), suggesting
this measure of experimental variability is likely a conservative esti-
mate of the true aleatoric limit. However, our model performance on
the test set approaches even this conservative estimate of the aleatoric
limit, particularly for the SolProp test set (RMSE = 0.83 for both mod-
els). The comparatively poor performance of transformer-based
foundation models MolFormer and ChemBERTa also support our
conclusion that model expressivity is not limiting performance,
but rather aleatoric uncertainty.

In the context of aqueous solubility, Palmer and Mitchell' com-
piled a curated set of highly accurate experimental measurements,
concluding that model performance was limited by QSPR methods,
rather than experimental variability. Since then, innovations in che-
minformatics software have led to highly accurate and expressive
model architectures which have been shown to perform excellently on
molecular property prediction tasks****. We expect these flexible
models to continue to improve as more training data are provided.
However, as shown in Fig. 5a, there is no statistically significant
reduction in test RMSE as thousands of additional data are added.
These results instead suggest that experimental variability in the test
data limits model performance and that better test data is needed to
accurately assess the quality of our models. This affirms the observa-
tions in the Vermeire et al.”' study, wherein the model was found to
perform better on more accurate testing data. Current literature
trends toward aggregating larger databases of published experimental
solubility values. However, we have demonstrated that fewer than 500
experiments from our training set are needed to achieve near-optimal
performance. Compiling larger training databases will not reduce test
RMSE beyond the aleatoric limit demonstrated here. Future work
should create accurate testing datasets of solubility in organic solvents
in the same manner as the CheqSol dataset of highly accurate aqueous
solubility compiled by Palmer and Mitchell® or apply careful,
scientifically-informed curation as LLompart et al.*° performed on
AgSolDB®. Further innovations in model architecture or compiling
more training data may improve predictions but they will be difficult to
discern without better test data.

In conclusion, we present organic solubility prediction models
using deep learning on fixed and learned molecular representations,
then test them under rigorous solute extrapolation. Our models
outperform comparable literature models by a factor of 2-3 on
publicly-available test sets. We demonstrate that our models predict
near the aleatoric limit of the experimental test data, motivating the
assembly of highly accurate testing datasets for the field to notice
further improvements in organic solubility prediction. Given the
importance of solid solubility prediction, we have termed the fixed
representation model FASTSOLYV due to its rapid inference time and
taken extensive steps to make it available. FASTSOLYV can be accessed
via any web browser for free at fastsolv.mit.edu, downloaded as a
python package for use in scripting (pypi.org/project/fastsolv/), and
is integrated directly within the ASKCOS (askcos.mit.edu) platform
for retrosynthesis.
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Methods

Training procedure

Rigorous evaluation of extrapolation requires careful preparation of
the data for training, validation, and testing. Overlapping solute

structures in the testing and training data are dropped from the
training data to avoid data leaks. The ASTARTES software package®™ is
then used to randomly partition entire experiments from the training
data into validation and training sets, again ensuring that no solute
structures are seen by the model in both sets. A single model contains
four individual networks trained on a different random training set to
account for the affect of random sampling. Reported predictions on a
given test set are thus the average prediction across these four trained
models, and reported prediction uncertainty is the standard deviation
of these predictions.

Network architecture

Prior to arriving at the architecture shown in Fig. 1, more complex
models inspired by the work of Pathak et al. were tested®. Extensive
efforts were made to identify a physics-informed neural network
architecture which would infuse inductive bias into the network and
thereby improve predictions. Each of the following features was made
available during the automated hyperparameter optimization such
that the algorithm would automatically deduce which was the most
effective:

* To allow the network to learn a unique per-solvent and per-solute
representation rather than a single ‘solution’ representation,
distinct linear layers could be added after the initial mapping for
both the solute and the solvent. This reflects the intuitive
understanding that each solute and solvent should have a unique
contribution to the resulting solubility which is independent of
the exact solution.

* The manner in which the latent solute and solvent representations
are combined was also configurable, with some choices including
elementwise addition, subtraction, multiplication, or simple
concatenation. These are analagous to existing solubility predic-
tion models such as the multiplicative Abraham model.

To explore the resulting massive design space, we leveraged the
Optuna hyperparameter optimization framework of Akiba et al.**
Across many repeated instances of optimization, the search algorithm
always selected the comparatively simple architectures described in
the present study. The addition of inductive bias was unable to surpass
reliance on the comparatively simple architecture, at least given the
current aleatoric limit of available data. See Supporting Information S1
for further details, including a complete table of the search space
explored in this work.

Sobolev training™ was implemented for both the Chemprop- and
FASTPROP- based FASTSOLV models. This approach penalizes the
network during training for both the error in the prediction of the
solubility and the gradient of the predicted solubility with respect to
the input temperature. The latter is approximated from the input data
using finite differences, a reasonable approximation for the typically
monotonic and locally-linear solubility curves. During training the
gradient is found by continuing backpropagation through all network
layers, as is usually done, and additionally the input temperature. The
effect of Sobolev training is that networks generally converge in fewer
epochs, have substantially increased accuracy relative to experimental
gradients, and are stronger interpolators. The latter is of specific
interest in some process applications of FASTSOLV. During inference,
the FASTSOLV model will not continually increase predicted solubility
past an input temperature of approximately 350 K. This is a deliberate
design choice, given that many common organic solvents boil at or
near this temperature: ethanol (351.5 K), benzene (353.2 K), acetonitrile
(355.1K), methyl ethyl ketone (352.8K), hexane (341.8K), tetra-
hydrofuran (339.1K), and ethyl acetate (350.2K).

Aleatoric error study
The performance trajectory shown in Fig. 5 is generated by gradually
increasing the amount of training data available to the model. The
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model is trained in the same manner as described in Section 1.1, actually
containing four separate networks trained on different random selec-
tions of the downsampled data. At first the model sees only a small
number of experiments during training before subsequent testing on
the holdout sets. The amount is gradually increased to the full size of the
dataset, analogous to performing more solubility experiments to gather
more samples in hopes of improving model performance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

We neither present nor generate original data as part of this study.
Datasets used for training and testing within this study were retrieved
from publicly available sources. The Boobier et al** data used in
this study are available in the Zenodo database under accession code
10.5281/zenodo.3686213. The Krasnov et al.>> data used in this study
are available in the Zenodo database under accession code 10.5281/
zen0do0.6984601. The Vermeire et al.”’ data used in this study are
available in the Zenodo database under accession code 10.1021/
jacs.2c01768. Further step-by-step instructions to retrieve the data and
prepare it for training and testing are provided alongside the source
code referenced in Code availability. Source data are provided with
this paper.

Code availability

The source code for model training, testing, and analysis is available on
GitHub (https://github.com/JacksonBurns/fastsolv). A static snapshot
of this code as used in this study has also been provided on Zenodo®®.
FASTSOLYV is also packaged through PyPI and installable in Python via
pip (https://pypi.org/project/fastsolv/). Model checkpoints are
deposited on Zenodo”. FASTSOLYV is also directly accesisble via a web
interface (http://fastsolv.mit.edu/).
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