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Abstract

Small molecule solubility is a critically important property which affects the
efficiency, environmental impact, and phase behavior of synthetic processes.
Experimental determination of solubility is a time- and resource-intensive pro-
cess and existing methods for in silico estimation of solubility are limited by
their generality, speed, and accuracy. This work presents two models derived from
the fastprop and chemprop architectures and trained on BigSolDB which are
capable of predicting solubility at arbitrary temperatures for any small molecule
in organic solvent. Both extrapolate to unseen solutes 2-3 times more accu-
rately than the current state-of-the-art model and we demonstrate that they are
approaching the aleatoric limit (0.5-1 log S), suggesting that further improve-
ments in prediction accuracy require more accurate datasets. These models,
collectively referred to as fastsolv, are open source, freely accessible via a
Python package and web interface, highly reproducible, and up to 50 times faster
than the next best alternative.
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Small molecule solubility solubility refers to the extent to which a chemical species
will dissolve into a surrounding solvent. The solubility of organic solids is an essen-
tial molecular property that impacts the efficiency,[1] environmental impact,[2, 3]
and phase behavior[4] of synthetic processes. Solubility is crucial in wide-ranging
chemical processes spanning length and time scales including membrane-based chem-
ical separations,[5, 6] pharmaceutical design and discovery,[7] drug delivery and
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formulation,[8] the environmental fate of per-and polyfluoroalkyl substances (PFAS)[9]
and geological-scale dissolved organic carbon flux.[10] By convention, solubility S in
mol L−1 is expressed as log10 S since values can range over several orders of magnitude.

Experimental methods for determining solubility are notoriously time- and
resource-intensive,[11] and are regarded as highly inaccurate with reported inter-
laboratory experimental variability ranging between 0.5-1 logS.[12–17] For variable-
solvent datasets scraped from literature this variability defines the aleatoric limit
- the ’irreducible error’ which models cannot surpass without memorization. Given
that solubility as a function of temperature - almost always positive monotonic -
is often desired, experimental determination becomes even more onerous. The chal-
lenges of measuring solubility are particularly painful in pharmaceutical development,
where organic solubility complicates synthesis and purification,[18] aqueous solubility
limits in vivo efficacy,[19] and the solid state form of the drug confounds accurate
measurement.[20] For these reasons a priori estimation of logS has long been of
immense interest to the chemical sciences.

Methods have evolved from empirical group additivity correlations,[21, 22], to ab
initio conductor-like screening model (COSMSO) and its extension to realistic solva-
tion (COSMO-RS),[23] to bespoke-solvent machine learning (ML) models with random
forest regressors.[24] Given the specific importance of aqueous solubility in drug dis-
covery, most effort has focused on predicting aqueous solubility,[25] and relatively
fewer works have explored organic solvents, which are particularly crucial in synthetic
processes. The aforementioned experimental variability limit of 0.5-1 logS represents
a bound on the performance of any data-driven prediction method, since this variabil-
ity is irreducible. This variability limit has primarily been explored in the context of
aqueous solubility in today’s literature. [14, 15, 26] However, there is little reason to
believe that the experimental uncertainty should be any lower in organic solvents, and
may actually be higher due to increased variability in the experimental methodologies
used across laboratories.[27]

State-of-the-art methods focus on applying deep learning to organic solubil-
ity prediction, including graph-based neural networks and descriptor-based models
[24, 27–30]. Existing models, however, suffer from a lack of generalizability for a variety
of reasons. Boobier et al. trained solvent-specific models on only commonly available
solvents at room temperature due to a lack of sufficient data to do otherwise, thus
rendering the model non-generalizable by construction. Other works like those of Ye
and Ouyang and Lee et al. fail to evaluate model performance when extrapolating
to new, unseen solutes, a task which mirrors the real task where solubility prediction
would be applied in a synthetic pipeline. The state-of-the-art model in literature by
Vermeire et al. overcame some of these limitations by training a composition of deep
learning models on compiled thermochemical data and using a thermocycle to predict
solubility in arbitrary solvents for a wide range of temperatures. In this case, though,
data was leaked from training to testing, resulting in overly optimistic performance
reports as we demonstrate in this work. Reliance on a collection of machine learning
models makes inference times with this model relatively slow, as well.
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Here, we combine advances in cheminformatics software and a recently compiled
database of organic solubility, BigSolDB, [31] and develop a new state-of-the-art gen-
eral organic solubility prediction model and validate it under rigorous extrapolation
conditions. By adapting the fastprop[32] and chemprop [33, 34] architecures to
ingest two molecular structures and a temperature, we can train models on BigSolDB
to regress logS directly. Our optimized models yield a factor of three improvement
over the existing state-of-the-art organic solubility prediction models, with rapid infer-
ence times suitable for use in high-throughput workflows. We further demonstrate
that our optimized fastprop and chemprop models, which use fundamentally dif-
ferent molecular representations, both reach the irreducible error, or aleatoric limit, of
accuracy with only a small fraction of the total available data. This indicates that fur-
ther improvements on organic solubility predictions must be achieved through higher
quality datasets rather than larger datasets or more expressive models. Our fastest
model, termed fastsolv, is open source and can be downloaded as a python package,
accessed online via fastsolv.mit.edu, and is integrated in ASKCOS (askcos.mit.edu)
and Reaction Mechanism Generator (RMG, rmg.mit.edu).[35]

Fig. 1 Machine learning representation of solutions. (a) In our modeling approach, solute and sol-
vent structures are mapped to feature vectors. These feature vectors are concatenated to the solution
temperature to arrive at a solution representation, which is passed into a fully-connected neural
network and regressed to the logS. (b) Structures are mapped to feature vectors using a fixed rep-
resentation of Mordred descriptors as implemented in fastprop, or a learned representation derived
from message passing on a graph representation from chemprop. We compare the performance of
models trained on these fundamentally different solution representations.

1 Results

1.1 Datasets and model training approach

In a real discovery context, solubility prediction is usually applied towards a solute
extrapolation task, wherein it is desirable to know the solubility of novel candidate
compound in a variety of standard solvents for a given temperature. Thus, we strin-
gently trained and evaluated our model performance with this task in mind. However,
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attention to the ability of a model to extrapolate to new solutes is not typically heeded
in the literature, which makes benchmarking our model performance challenging.

We selected Vermeire et al. as the current literature state-of-the-art model against
which to benchmark our results, given that it is widely regarded as a highly perfor-
mant solvent and temperature-general model.[36, 37] This model contains multiple
individual models trained on multiple thermochemical datasets, with the model as
a whole being tested on the experimental solubility data compiled in the SolProp
dataset. Unfortunately a significant proportion of the testing solutes appeared in the
training dataset, demonstrating the need to rigorously evaluate model extrapolation
(Figure 1a).

We trained our models on the organic solubility data in BigSolDB, removing solutes
that overlap with the SolProp testing set in order to preserve the comparatively small
SolProp set. The overlap of solutes in BigSolDB with the Leeds testing set was in
contrast removed from the Leeds set, since the Leeds set already contains a diverse
variety of solutes. In sum, we ensured our training data had no overlapping solutes
with testing sets, providing a stringent test of solute extrapolation (Figure 1b). The
distribution of the label logS across these three datasets are similar, centered around
-1 with tails in the limit of solubility (Figure 1c).

We trained our models using 95% of the remaining data in BigSolDB, reserving
5% for validation and model selection. To avoid data leaks, we split our data based on
individual solubility experiments, one of which is visualized in Figure 2d, which ensure
no solutes appear in both training and validation sets. Since we split our dataset by
experiment and solute (Figure 2e), we ensure that we rigorously test extrapolation. The
performance of the trained solution fastprop model on the training and validation
performance is shown in the parity plot in Figure 2f. Performance is quantified via the
Root Mean Squared Error (RMSE) and the Percentage of Predictions within 1 logS
unit - a metric based on the upper reported limit of experimental reproducibility -
referred to as % logS±1.[24] The model achieves excellent interpolation accuracy, with
RMSE = 0.22 and % logS ± 1 = 99.3%. Similarly, the optimized solution chemprop
model achieved an RMSE = 0.28 and % logS ± 1 = 99.2%

1.2 Model performance on solute extrapolation

After training solution fastprop and chemprop models, their performance on
extrapolation was evaluated on the Leeds and SolProp test sets and benchmarked
against the Vermiere model as made available via a Python package in the origi-
nal publication. We observe that the Vermiere model performs poorly on the Leeds
dataset, with RMSE = 2.16 and % logS ± 1 = 41.2% (Figure 3a). On inspection
there is observable systematic bias, with the model often severely over-predicting the
solubility. In contrast, both the solution fastprop and chemprop models perform
similarly well, with RMSE = 0.95 and % logS ± 1 = 73.8% for fastprop and RMSE
= 0.99 and % logS ± 1 = 70.9% for chemprop (Figure 3b-c). The systematic bias is
greatly reduced in both models.

On the SolProp dataset, the Vermiere model performs slightly better (RMSE =
1.43 and % logS ± 1 = 66.9%), but still exhibits severe systematic bias, with several
specific experiments appearing with severaly overpredicted temperatures gradients
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Fig. 2 Datasets and model training approach. (a) The literature best Vermiere et al. trained on a
thermocycle with s >20k solutes. The solutes seen during training have overlaps with the SolProp
and Leeds testing datasets. (b) In this study, we rigorously test solute extrapolation performance
of our models by dropping overlap between the training dataset of BigSolDB, and the SolProp and
Leeds testing sets. (c) Distribution of the label, logS across the training and external testing sets. (d)
Demonstration of a single solubility experiment, which contains the measured solubility of a solute
(dibenzothiophene) in a solvent (diethylene glycol) across a range of temperatures.[38] (e) Rigorous
data splitting strategy splits training and validation data by experiment, ensuring data is not leaked
during model selection. (f) Parity plot demonstrating combined training and validation predicitons
on BigSolDB of optimized model with fastprop mapping. RMSE = 0.22, while % logS± 1 = 99.3%.
See Appendix A for training details.

compared to parity (Figure 3d). In contrast, the solution fastprop and chemprop
models perform significantly better, with RMSE = 0.83 and % logS ± 1 = 78.1% for
fastprop and RMSE = 0.83 and % logS ± 1 = 76.1% for chemprop (Figure 3e-f).
To go beyond these aggregate performance metrics, we also analyzed predictions on
specific solutions in the SolProp test set, and observe that our models can correctly
rank order solubility in different solvents, and can distinguish solubility in extremely
similar solvents when the Vermiere model cannot (Section B).

1.3 Model performance is capped by the aleatoric limit

Given the range of hypothesized experimental limits, ranging from 0.5 < RMSE < 1.0,
we sought to establish if our models are as performing as accurately as possible given
this dataset. To do so, we downsample the training dataset to some smaller size, train
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Fig. 3 Performance of literature best Vermiere model and our optimized solution fastprop and
solution chemprop models on test sets. Parity plots highlighting model predictions of (a) Vermiere
(RMSE = 2.16, % logS±1 = 41.2%), (b) solution fastprop (RMSE = 0.95, % logS±1 = 73.8%), and
(c) solution chemprop (RMSE = 0.99, % logS±1 = 70.9%) on Leeds dataset. Parity plots highlighting
model predictions of (d) Vermiere (RMSE = 1.43, % logS±1 = 66.9%), (e) solution fastprop (RMSE
= 0.83, % logS ± 1 = 78.1%), and (f) solution chemprop (RMSE = 0.83, % logS ± 1 = 76.1%) on
SolProp dataset.

three models and ensemble their performance on the test sets. Repeating this a differ-
ent sizes of downsampled training sets generates a performance trajectory as a function
of training set size (Figure 4a). We observe that the performance trajectories for both
the fastprop and chemprop models are similar, despite representing fundamentally
different modeling approaches. We also observe that the model performance on the
SolProp test set plateaus after only 500 experiments (∼5000 data points) are included
in training for both the chemprop and fastprop models. Similarly, the performance
on the Leeds test set plateaus for the chemprop model after only 2000 experiments
(∼20,000 data points), although performance of the simpler fastprop model takes
slightly longer to plateau.

Interestingly, the fastprop and chemprop predictions are highly correlated, with
a Pearson’s R = 0.86 (Figure 4b). This correlation is actually stronger than the
correlation of either model predictions to the dataset (0.66 for fastprop and 0.65
for chemprop). Additionally, comparing the cumulative distribution function (CDF)
of predicted gradients of logS with respect to temperature demonstrates the strong
correlation between the fastprop and chemprop model predictions (Figure 4c). We
obsereve that the Vermiere model has severe systematic error in d logS

dT , achieving an
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Earth Mover’s Distance (EMD) of 0.06. In contrast, our two models exhibit similar
and highly accurate gradient distributions, with EMD of 0.03 and 0.02.

To further examine whether the models are predicting similar results, we plot
the cumulative residuals of each model against important features in the SolProp
test set. The cumulative residuals against solute molecular weight (Figure 4d) and
solvent Wildman-Crippen logP (Figure 4e) both demonstrate that the fastprop and
chemprop models are making similar predictions across the SolProp test set.

Fig. 4 Model performances reaches aleatoric limit. (a) Test RMSE against the number of experiments
used in the training dataset for solution fastprop and chemprop on both the SolProp and Leeds
datasets. Orange-colored curves show results for solution fastprop models, while blue-colored curves
show test RMSE for solution chemprop models. For both colors, diamond markers indicate test
RMSE on the Leeds dataset, while circular markers indicate test RMSE on the SolProp dataset.
The shaded area indicates the range of aleatoric limit reported in literature (0.5 < logS < 1.0). The
plot cuts off at 0.7 for ease in visualizing the data. Error bars indicate standard deviation across
three randomized trainign trials. (b) Correlation of fastprop and chemprop model predictions on
the SolProp test set. Pearson’s R = 0.86. Black dotted line shows parity. (c) CDF of the gradients of
logS with respect to temperature T in the SolProp test set. Vermeire predicted gradient CDF (green)
achieves an earth movers distance (EMD) of 0.06 compared to the SolProp ground truth gradient
CDF (black). fastprop predicted gradient CDF (orange, EMD = 0.03) and chemprop predicted
gradient CDF (blue, EMD = 0.02) compared to the SolProp ground truth gradient CDF (black).
(d-e) Cumulative residual of fastprop (orange) and chemprop (blue) model predictions of logS in
the SolProp test set against (d) solute molecular weight (g/mol) and (e) solvent Wildman-Crippen
logP . Cumulative residual is multiplied by 10−3 for concise axis labels.

2 Discussion

Here, we leveraged state-of-the-art cheminformatics software and large compiled sol-
ubility datasets to develop accurate and generalizable solubility models. In stringent
extrapolation, we observe a 2-3 fold decrease in RMSE over the literature best model
from Vermeire et al.. In addition, due to the relative simplicity of the architecture
and the more modern code, inference times with this approach are up to fifty times
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faster. To the best of our knowledge, our models are the best performing solvent- and
temperature general models in the literature on solute extrapolation.

The methodological errors in Vermeire et al. model training lead to overly opti-
mistic performance results reported in this study as shown in Figure 3. As shown in
the solute Venn diagrams in Figure 2, many entries in the SolProp testing set are
present in the training set. In evaluating Vermeire et al.’s performance on the rigorous
solute extrapolation test posed by the Leeds set, the performance drops to RMSE =
2.16, demonstrating a more realistic test performance. Additionally, we observe non-
physical gradients with respect to temperature, indicating the model has not learned
a functional approximation of the temperature dependence of logS.

In contrast, our optimized solution fastprop and solution chemprop models
exhibit much more consistent performance between the Leeds and SolProp test sets,
highlighting the strong performance of our models under rigorous solute extrapolation
(Figure 2). The slightly decreased accuracy of our models on the Leeds test set is
perhaps attributable to the increased solute diversity in the Leeds dataset, which
is to be expected given the difference in its construction. Both models also exhibit
accurate and physically-realistic predictions of the gradient on the solubility with
respect to temperature, indicating the models learned physically-realistic temperature
dependence - critically important in specific process chemistry applications.[39, 40]

The training data size study and the error analysis presented in Figure 3 shows
that our optimized models, which rely on distinct molecular mappings, both converge
to the same performance limits with similar distributions of predictions and errors.
The highly correlated predictions and cumulative residuals show both models achieve
not only the same average performance, but predict similarly across the tests sets.
chemprop should be able to continuously learn a better representation as the size
of the training set increases, as demonstrated by Heid et al. on several molecular
properties.[41] However, our optimized solution chemprop model performance stops
improving after a relatively small amount of training data, indicating that variability
in the training data limits the model’s ability to learn an improved representation and
predict more accurately.

In the context of aqueous solubility, Palmer and Mitchell compiled a curated set
of highly accurate experimental measurements, and concluded experimental uncer-
tainty was not limiting model performance, but rather QSPR methods themselves
were limiting. Since then, innovations in cheminformatics software has led to highly
accurate and expressive model architectures which have been shown to perform excel-
lently on molecular property prediction tasks.[33, 42] The inability of these models to
improve with increasing training set size on organic solubility predictions challenges
this paradigm. This instead suggests that experimental uncertainty that limits model
performance - the aleatoric limit has been reached - and that a new approach is needed
to further improve models.

Currently, there are substantial efforts on compiling larger databases of pub-
lished experimental datasets from the literature. However, as we demonstrated, only
a small subset, ∼ 5000 points, of our training set are needed to achieve near-optimal
performance. Compiling larger databases will not continue to improve model perfor-
mance beyond the aleatoric limits demonstrated here. Instead, accurate datasets of
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organic solubility are needed, analogous to the CheqSol dataset compiled by Palmer
and Mitchell. While it is possible that further innovations in model architecture can
improve predictions, the irreducible error imposed by the experimental uncertainty
must be reduced in order to impart a noticeable improvement in organic solid solubility
predictions.

In conclusion, we present organic solubility prediction models using deep learning
on fixed and learned molecular representations, then test them under rigorous solute
extrapolation. Our models outperform comparable literature models by a factor of 2-
3 on publicly-available test sets. We demonstrate that our models are predicting near
the aleatoric limit of the experimental training data, motivating the assembly of highly
accurate datasets for the field to notice further improvements in organic solubility
prediction. Given the importance of solid solubility prediction, we have termed the
fixed representation model fastsolv and taken extensive steps to make it available.
fastsolv can be accessed via any web browser for free at fastsolv.mit.edu, downloaded
as a python package for use in scripting, and is integrated directly within the ASKCOS
(askcos.mit.edu) and RMG (rmg.mit.edu) platforms for retrosynthesis and reaction
mechanism generation, respectively.

3 Methods

3.1 Training Procedure

Rigorous evaluation of extrapolation requires careful preparation of the data for train-
ing, validation, and testing. Overlapping solutes structures in the testing and training
data are dropped from the training data to avoid data leaks. The astartes software
package [43] is used to randomly partition entire experiments into these sets, again
ensuring that no solute structures are seen by the model in multiple sets. A single
‘model’ contains four individual networks trained on a different random training set to
account of the affect of random sampling, and a prediction is then the average across
these four models.

3.1.1 Network Architecture

Prior to arriving at the simple architecture shown in Figure 1, more complex models
inspired by the work of Pathak et al. were tested. Additional separate latent lay-
ers were added to solute and solvent which allowed the network to learn a solute-
and solvent-specific representation before performing a configurable ’interaction’ oper-
ation such as concatenation or element-wise multiplication. The same optimization
framework mentioned above was used to choose the best network with these options,
and it consistently disabled these additional complexities. Simply relying on Univer-
sal Approximation theorem is sufficient - additional inductive bias does not improve
performance. See B for further details.

3.2 Aleatoric Error Study

The ‘performance trajectory’ shown in Figure 4 is generated by gradually increasing
the amount of training data available to the model. The model is trained in the same
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manner as described previously, actually containing four separate networks trained on
different random selections of the downsampled data. At first the model sees only a
small number of experiments during training before subsequent testing on the holdout
sets. The amount is gradually increased to the full size of the dataset, analogous to
performing more solubility experiments to gather more samples in hopes of improving
model performance.
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Appendix A Training Details

The PyTorch [45] library is used to implement networks via the PyTorch Lightning [46]
framework, which delivers excellent reproducibility and reusability. Network hyperpa-
rameters are optimized automatically using the Optuna software package [47]. Network
hyperparameter optimization and training took place on the MIT SuperCloud High

10

https://doi.org/10.26434/chemrxiv-2024-93qp3 ORCID: https://orcid.org/0000-0002-9941-3846 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://github.com/JacksonBurns/fastsolv
https://pypi.org/project/fastsolv/
https://zenodo.org/records/13943074
http://fastsolv.mit.edu/
https://doi.org/10.26434/chemrxiv-2024-93qp3
https://orcid.org/0000-0002-9941-3846
https://creativecommons.org/licenses/by/4.0/


Performance Computing cluster [48] GPU nodes containing 2 x Nvidia Volta V100s.
All reported metrics are defined according to their usual formulae and are implemented
via standard Python machine learning packages. Early stopping was used during train-
ing, which allows the network to continue training until the error on the validation set
increased, indicating overfitting. At that point, the network is reverted to the previous
weights prior to the increase and carried forward for testing.

Extensive efforts were made to identify a physics-informed neural network archi-
tecture which would infuse inductive bias into the network and improve predictions.
Each additional facet was enabled during the automated hyperparameter optimization
such that the algorithm would automatically deduce which was the most effective. To
allow the network to learn a unique per-solvent and per-solute representation rather
than a single ’solution’ representation, distinct linear layers were added after the ini-
tial Mapping. This reflects the intuitive understanding that each solute and solvent
should have a unique contribution to the resulting solubility which is independent of
the exact solution. The manner in which the latent solute and solvent representations
was also configurable - in analogy to existing solubility prediction models, the network
could choose to perform element-wise multiplication, subtraction, or addition instead
of simple concatenation. Across many repeated hyperparameter optimization instances
none of the physics-infused models were able to outperform the simple architecture
presented in the main text. Inductive bias was unable to surpass reliance on universal
approximator theorem, at least given the current aleatoric limit of available data.

Sobolev training [49] was implemented for both the Chemprop- and fastprop-
based fastsolv models. This approach penalizes the network during training for both
the error in the prediction of the solubility and the gradient of the predicted solubility
with respect to the input temperature. The latter is approximated from the input data
using finite differences, a reasonable approximation for the typically monotonic and
locally-linear solubility curves. During training the gradient is found by continuing
backpropagation through all network layers, as is usually done, and additionally the
input temperature. The effect of Sobolev training is that networks generally converge
in fewer epochs and are stronger interpolators. The latter is of specific interest in some
process applications of fastsolv.

All code implementing the above is open source, permissively licensed, and
available online at github.com/JacksonBurns/fastsolv.

Appendix B Predictions on Specific Solutions

We further validated the performance of our models by investigating the predictions
on specific solutions. We selected two structurally distinct solutes from the held out
SolProp test set, risperidone and L-prolinamide, and compared model predictions
from fastsolv and Vermiere against the experimental solubility data as a function
of temperature for different solvents. Risperidone is a water-insoluble benzisoxazole
derivative and antipyschotic, [50] while L-prolinamide is an amino acid amide used in
peptide synthesis and as an organic catalyst.[51]

For risperidone, we observe that the fastsolv predictions in acetone and iso-
propanol are highly accurate, with the model correctly predicting the relative order
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(higher solubility in acetone), and accurately predicting the gradient of solubility with
respect to temperature (Figure B1a). In contrast, the Vermiere model overpredicts the
solubility in both acetone and isopropanol, exhibits much greater model uncertainty,
and overpredicts the slope of the curve with respect to temperature. For L-prolinamide,
we impose a challenging task for the model by predicting solubility in extremely sim-
ilar solvents, hexane and heptane. We observe that fastsolv is able to discriminate
solubility between these similar solvents, correctly predicting higher solubility in hep-
tane, while the Vermiere model predicts identical soubility in both solvents (Figure
B1b). Again, we also observe accurate absolute predictions, gradients, and lower model
uncertainty.

In both cases, we observe fastsolv correctly predicts the rank ordering of solubil-
ity in the solvents, which is an important task for high-throughput virtual screening
workflows. Additionally, the ability to discriminate between highly similar solvents is a
difficult task for ML models, and the ability of fastsolv to do so indicates it is accu-
rately representing solvent molecules. Overall, we these results further validate model
performance under solute extrapolation beyond the aggregate performance metrics
reported in Figure 3.

Fig. B1 Performance on example solutions. Solubility predictions and experimental data as a func-
tion of temperature for solutions of (a) risperidone in acetone (blue) and isopropanol (orange) and
(b) L-prolinamide in hexane (blue) and heptane (orange). Experimental data are plotted as circles,
predictions from the Vermiere model are plotted as a dotted line, and fastsolv predictions are plot-
ted as solid lines. The shaded areas indicate model uncertainty. Experimental risperidone solubility
data is compiled in SolProp from Mealey et al.. Experimental L-prolinamide solubility data is com-
piled in SolProp from Cui et al.
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